Application of the biotic ligand model to predicting zinc toxicity to rainbow trout, fathead minnow, and Daphnia magna.

نویسندگان

  • Robert C Santore
  • Rooni Mathew
  • Paul R Paquin
  • Dominic DiToro
چکیده

The Biotic Ligand Model has been previously developed to explain and predict the effects of water chemistry on the toxicity of copper, silver, and cadmium. In this paper, we describe the development and application of a biotic ligand model for zinc (Zn BLM). The data used in the development of the Zn BLM includes acute zinc LC50 data for several aquatic organisms including rainbow trout, fathead minnow, and Daphnia magna. Important chemical effects were observed that influenced the measured zinc toxicity for these organisms including the effects of hardness and pH. A significant amount of the historical toxicity data for zinc includes concentrations that exceeded zinc solubility. These data exhibited very different responses to chemical adjustment than data that were within solubility limits. Toxicity data that were within solubility limits showed evidence of both zinc complexation, and zinc-proton competition and could be well described by a chemical equilibrium approach such as that used by the Zn BLM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chronic Toxicity of Di-n-butyl and Di-n-octyl Phthalate to Daphnia Magna and the Fathead Minnow

The toxicities of di-n-butyl phthalate (DBP) and di-n-octyl phthalate (DOP) were assessed by measuring the effect of exposure to these compounds on the fecundity of Daphnia magna and on the hatching and survival of the early life stages of the fathead minnow Pimephales promelas. For D. magna, exposure to 1.8 mg/L DBP or 1.0 mg/L DOP caused a significant reduction in reproduction. Doses of 0.56 ...

متن کامل

Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia.

The biotic ligand model (BLM) was developed to explain and predict the effects of water chemistry on the acute toxicity of metals to aquatic organisms. The biotic ligand is defined as a specific receptor within an organism where metal complexation leads to acute toxicity. The BLM is designed to predict metal interactions at the biotic ligand within the context of aqueous metal speciation and co...

متن کامل

The effect of calcium and magnesium ratios on the toxicity of copper to five aquatic species in freshwater.

While it is generally accepted that water hardness affects copper toxicity, the major ions that contribute to water hardness (calcium [Ca] and magnesium [Mg]) may affect copper toxicity differently. This is important because the Ca:Mg ratio in standard laboratory-reconstituted waters often differs from the ratio in natural surface waters. Copper toxicity was assessed for five different aquatic ...

متن کامل

Predicting acute zinc toxicity for Daphnia magna as a function of key water chemistry characteristics: development and validation of a biotic ligand model.

The individual effect of different major cations (Ca2+, Mg2+, Na+, K+, and H+) on the acute toxicity of zinc to the waterflea Daphnia magna was investigated. The 48-h median effective concentration (EC50) in the baseline test medium (i.e., a standard medium with very low ion concentrations) was about 6 microM (Zn2+). An increase of Ca2+ (from 0.25 mM to 3 mM), Mg2+ (from 0.25 mM to 2 mM), and N...

متن کامل

An evaluation of biotic ligand models predicting acute copper toxicity to Daphnia magna in wastewater effluent.

The toxicity of Cu to Daphnia magna was investigated in a series of 48-h immobilization assays in effluents from four wastewater treatment works. The assay results were compared with median effective concentration (EC50) forecasts produced by the HydroQual biotic ligand model (BLM), the refined D. magna BLM, and a modified BLM that was constructed by integrating the refined D. magna biotic liga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comparative biochemistry and physiology. Toxicology & pharmacology : CBP

دوره 133 1-2  شماره 

صفحات  -

تاریخ انتشار 2002